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We investigate the effect of static antiphase stripe order on the weak-field Hall effect of electrons on a
two-dimensional square lattice with electron dispersion appropriate to the high Tc cuprates. We first consider
the cases where the magnitudes of the spin-and charge-stripe potentials are smaller than or of the same order
as the bandwidth of the two-dimensional electrons so that the electronic properties are not too strongly one
dimensional. In a model with only spin-stripe potential, and at carrier concentrations appropriate to hole-doped
cuprates, increasing the stripe scattering potential from zero leads to an increase in RH, followed by a sign
change. If the scattering amplitude is yet further increased, a second sign change occurs. The results are in
semiquantitative agreement with data. In a charge-stripe-potential-only model, RH increases as the charge-
stripe scattering strength increases with no sign change occurring. In a model with both spin- and charge-stripe
potentials, RH may be enhanced or may change sign, depending on the strengths of the two scattering poten-
tials. We also consider the case in which the magnitudes of the stripe potentials are much larger than the
bandwidth, where analytical results can be obtained. In this limit, the system is quasi-one-dimensional while
RH remains finite, and its sign is determined by the carrier density and the electron band parameters.
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I. INTRODUCTION

Stripe order, static or fluctuating, is argued to be an im-
portant ingredient in understanding the physics of the high-
temperature superconductors1,2 and has been shown to have
implications for the Hall effect.3 In the YBa2Cu3O6+x family,
stripe order was recently used to explain4 the small pockets
observed in the quantum oscillation measurements,5,6 and to
account for the important observation7 that an electronlike
Hall resistance was observed at the dopings corresponding to
the small Fermi surface pockets. In the family of materials
derived from La2CuO4, stripe order is believed to be preva-
lent, being related to the “1/8 anomaly” observed in most
members of this material family.8 In the La1.6−xNd0.4SrxCuO4
�Nd-LSCO� series, static-stripe order has been shown by
neutron-diffraction measurements to exist over a significant
part of the temperature-doping phase diagram9 up to Sr dop-
ing x�0.25.

The Hall resistance of La1.6−xNd0.4SrxCuO4 systems has
been studied experimentally.10,11 It was found that, at the
nominal hole doping x=0.24, the low-temperature Hall coef-
ficient RH takes the value appropriate to a two-dimensional
�2D� metal with carrier �hole� density 1+x. However, for the
lower dopings x=0.20 and x=0.12, the measured RH deviates
significantly from what is expected for a conventional metal
with carrier density 1+x. At x=0.20, RH, while positive, is
much larger than the value expected from the conventional
model. For x=0.12, the sign of RH is opposite, showing an
electronlike behavior. A similar issue arises in the electron-
doped cuprates Pr2−xCexCuO4 �PCCO�,12 where the Hall
number is positive for doping x�0.15 and becomes negative
for smaller dopings. In the electron-doped material, the
change of sign was explained by a commensurate �� ,��
spin-density wave order.13 However, in the hole-doped ma-
terials, �� ,�� ordering would not produce a sign change. In
this paper, we investigate whether stripe order can account
for the magnitude and the unconventional doping depen-

dence of the Hall resistivity observed in the La/Nd-Sr-Cu-O
compounds.

The rest of this paper is organized as follows. Section II
defines a phenomenological model for band electrons in the
presence of stripe order and summarizes the formula used to
calculate the conductivities. Section III illustrates the evolu-
tion of the Fermi surface in the stripe-ordered state. Section
IV discusses the effects of the charge-stripe and the spin-
stripe potentials on transport properties. Section V presents
the doping dependence of RH in the spin-stripe-ordered state.
Section VI discusses the Hall effect in the strong stripe po-
tential limit. Section VII is the conclusion in which the re-
sults are summarized and discussed, and implications are
outlined.

II. MODEL AND FORMALISM

We assume electrons moving on a two-dimensional
square lattice of unit lattice constant with a band dispersion
given by

�p = − 2t�cos px + cos py� + 4t� cos px cos py

− 2t��cos 2px + cos 2py� . �1�

In our numerical calculations, we use the canonical values14

t=0.38 eV, t�=0.32t, and t�=0.5t�. In addition, we assume
that the electrons feel the effect of static “stripe” �spin- and
charge-density wave� order. Because we are interested only
in low-temperature transport, we neglect fluctuations and
treat the order in the mean-field approximation.

We take the spin modulation to be longitudinal and to be
described by the wave vector Qs so that it gives rise to the
scattering potential

�s�R� = 2V cos Qs · R .

The spatial periodicity of this potential can be obtained from
the incommensurate peaks in neutron-diffraction measure-
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ments. Tranquada et al.15 showed that, in the Nd-LSCO se-
ries for x�1 /8, Qs=��1−2x ,1� while for x�1 /8, the spin
incommensurability is approximately doping independent
with wave vector Qs

����3 /4,1�. We will be mainly inter-
ested in doping x�1 /8, so we fix Qs=Qs

�.
Charge modulations are also observed in the Nd-LSCO

materials.16 These occurs at the wave vector Qc=2Qs ex-
pected from general Landau theory arguments, which allow a
term SQ

2 �−2Q in the free energy where SQ and �−2Q are the

spin-stripe and charge-stripe order parameters, respectively.17

We model the effect of charge stripes by the potential,

�Q�R� = 2Vc cos Qc · R ,

and we set Qc=2Qs
�=��1 /2,0�. We have approximated the

stripe potentials as simple cosines; deviations from this form
were investigated and found not to be important.4

These considerations lead to the following Hamiltonian:

H = �
�p Vc 0 Vc 0 V V 0

Vc �p+�1/2,0�� Vc 0 0 0 V V

0 Vc �p+�1,0�� Vc V 0 0 V

Vc 0 Vc �p+�3/2,0�� V V 0 0

0 0 V V �p+�1/4,1�� Vc 0 Vc

V 0 0 V Vc �p+�3/4,1�� Vc 0

V V 0 0 0 Vc �p+�5/4,1�� Vc

0 V V 0 Vc 0 Vc �p+�7/4,1��

� . �2�

We assume that the low-temperature dc transport can be
described by the Boltzmann equation. We further assume
that, as is appropriate for low temperatures, the relaxation is
mainly due to randomly distributed impurities with a low
density, leading to a constant scattering rate, 1 /2�. The ex-
pressions for the longitudinal and Hall conductivities then
follow from solving the Boltzmann equation with the
relaxation-time approximation �for a detailed derivation, see
Ref. 13�. Assuming the T→0 limit can be taken, these ex-
pressions are one-dimensional �1D� integrals along the Fermi
surface,

�xx =
�Q

4�2� � ds
vx�s�2

vF�s�
, �3�

�yy =
�Q

4�2� � ds
vy�s�2

vF�s�
, �4�

and

�xy = �Q
B

	0

1

4�
�2 � v 
 dv · ẑ , �5�

where s is the arc-length coordinate along the 2D Fermi sur-
face, ẑ is the unit vector along the c axis, and v is the Fermi
velocity. In these equations, �Q=e2 /� is the conductance
quantum and 	0=hc /2e is the superconducting flux quan-
tum. The Hall coefficient RH=�xy / �B�xx�yy�=1 /nec. Here n
has the meaning of an effective electron density per unit cell
per plane.

We evaluate these equations by first identifying the bands
that produce Fermi-surface segments and then using a nu-
merical search procedure to locate the Fermi surface. Typi-

cally, �104 Fermi-surface points are used. We then compute
the velocities at each point and evaluate the integrals by the
trapezoidal rule.

III. FERMI-SURFACE EVOLUTION IN THE SPIN- AND
CHARGE-STRIPE-ORDERED STATES

As shown in Ref. 4, in the mean-field stripe-ordered state,
the electron Fermi surface is reconstructed from the one ob-
tained in the band theory calculation in a complicated way.
The normal-state Fermi surface for doping x=1 /8 is shown
as the solid line in Fig. 1, along with its translations by Qs

=�� 3
4 ,1� �dashed line� and by �2� ,2��−Qs=�� 5

4 ,1�
�dashed-dotted line�. For small V and/or Vc, reconstruction
happens in the vicinity of the hot spots �shown as solid
points in Fig. 1� where the Fermi surface crosses itself upon
translation by the stripe wave vectors. In Fig. 1, we only
show two values of the stripe wave vectors for simplicity.
The complete Fermi-surface crossing can be found in Ref. 4.

The Fermi-surface evolution in the absence of the charge-
stripe potential is illustrated in Fig. 2, where the Fermi sur-
faces are plotted from left to right for increasing values of V.
We see from Fig. 2�a� that, at relatively small V, there are
well-defined hole pockets centered at ��� /8,� /2�, electron
pocket centered at �0,��, and open Fermi surface. When V is
increased further, the hole pockets are eliminated �Fig. 2�b�	
and at a still larger V, the electron pocket is eliminated, leav-
ing the open Fermi surface alone �Fig. 2�c�	.

The Fermi-surface evolution due to a charge-stripe poten-
tial in the absence of the spin-stripe potential is plotted in
Fig. 3. We see that for the two Vc values shown here, the
Fermi surface is open with no pockets.
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When both types of stripe potentials are present, the
Fermi-surface reconstruction is more complicated. One rep-
resentative Fermi surface is shown in Fig. 4. In the case
plotted, three bands cross the Fermi level. Two of them give
open Fermi surfaces while the third one gives an electron
pocket centered at �0,0�.

The consecutive changes of the Fermi-surface topology
upon changing the stripe potentials influence the Hall con-
ductivity �xy, as well as the longitudinal conductivities �xx
and �yy, and will be studied in the next section.

IV. HALL EFFECT: SPIN-STRIPE POTENTIAL VS
CHARGE STRIPE POTENTIAL

A. Overview

In this section, we will consider the Hall effect in the
spin- and/or charge-stripe potentials. Separate subsections
treat different cases. We shall first consider the case where
both potentials are weak, that is, the system is close to the
quantum critical point from the normal state to the stripe-
ordered state. Then, we consider the cases of spin-stripe po-
tential only and charge-stripe potential only, and finally the
effects of combined spin- and charge-stripe scattering. In this

section, we shall fix the doping to be x=0.125, where the
stripe order is most stable, and study the Hall effect, chang-
ing the strength of the stripe potentials V and Vc. In Sec. V,
we treat the doping dependence.

B. Critical behavior close to the stripe order quantum phase
transition

At small V and/or Vc, the Fermi surface reconstructs in the
vicinity of the hot spots; it is essentially unchanged far from
those points. Thus, although there are several Fermi-surface
crossings due to the 8
8 matrix structure of H, the total
changes in �xy, �xx, and �yy are additive. For each Fermi-
surface crossing, our previous analysis13 applies. We find

�xy and 
�xx+
�yy are both linear in V and Vc, such that as
V→0 and Vc→0,


RH

RH
0 =


�xy

�xy
0 −


�xx + 
�yy

�xx
0 = aV + bVc, �6�

where the superscript 0 denotes the corresponding value in
the normal state, and we have used the fact that the normal
state has four-fold symmetry so that �xx

0 =�yy
0 . The prefactors

a and b can be determined; a�6 eV−1 and b�10 eV−1. In
the case of PCCO,13 this asymptotic formula holds only
within 1% of the critical value. The more complicated Fermi
surfaces found here will restrict the domain of validity even
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1

p y

FIG. 1. The normal-state Fermi surface �solid line� for doping
x=1 /8, and its translations by Qs=��3 /4,1� �dashed line� and by
�2� ,2��−Qs=��5 /4,1� �dashed-dotted line� in the first quadrant
of the first Brillouin zone. The four hot spots are shown here as
solid points. In this and the following Fermi-surface plots, the unit
of momentum p is � /a with a=1 as the lattice constant of the
square lattice.
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FIG. 2. Fermi-surface evolution in the spin-stripe-ordered state
with the charge-stripe potential Vc=0 and doping x=1 /8. �a� V
=0.2 eV. �b� V=0.25 eV. �c� V=0.3 eV.
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FIG. 3. Fermi surface in the charge-stripe-ordered state with the
spin-stripe potential V=0 and a fixed doping x=1 /8. �a� Vc

=0.15 eV. �b� Vc=0.35 eV.
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FIG. 4. The Fermi surface in the presence of both spin- and
charge-stripe orders at doping x=1 /8, V=0.2 eV, and Vc=0.3 eV.
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further. For the very small values of V and Vc for which Eq.
�6� applies, there are complications due to strong-field
crossover18 or magnetic breakdown.19

C. Spin-stripe potential only

In this subsection, we consider the case where the elec-
trons are scattered only from the spin-stripe potential,
namely, Vc=0. For each value of V, we calculate the loci of
the Fermi surface and the Fermi velocities, and use this in-
formation in Eqs. �3�–�5�. Figure 5 shows the results of such
a calculation. We note that the onset of the stripe potential
suppresses both the longitudinal and the Hall conductivities
�Figs. 5�a�–5�c�	, as in the case of the commensurate spin-
density wave order in PCCO.13 Figure 2 shows the corre-
sponding Fermi surfaces for the three nonzero V values. We
can see that the behavior of �xy can be qualitatively under-
stood in terms of the evolution of the Fermi-surface
topology.20 For V=0.2 eV, RH is positive and significantly
larger than the value in the normal state. The sign is due to
the dominant hole pockets �Fig. 2�a�	 and the enhancement is
due to the strong decrease in the longitudinal conductivities.
When V grows large enough �0.25 eV here�, RH becomes
negative. This reversal of sign comes from the elimination of
the hole pockets �Fig. 2�b�	. The smallness of the open
Fermi-surface contribution to �xy means that the electron
pocket determines the sign of RH. At still larger V �0.3 eV�,
the electron pocket is eliminated �Fig. 2�c�	. The open Fermi
surface gives rise to a small positive contribution to �xy

�holelike� so RH becomes positive again. However, the sign
of RH due to the open Fermi surface changes as V is in-
creased further. As will be shown in Sec. VI, the crossover to
the strong-coupling limit occurs at V�1 eV.

We notice that, in the cases with V=0.25 and 0.3 eV, 
RH

is quite large compared to the band value RH�V=0� although
�xy is much smaller than �xy�V=0�. This is due to the large
anisotropy, as measured by �yy /�xx, for these two V values.
This anisotropy is due to the open Fermi surfaces and grows
rapidly with increasing V. This anisotropy compensates for
the smallness of �xy, giving a large RH.

Figure 5�d� shows RH for the three values of V. We see
that, as V grows, RH first increases such that, at V=0.2 eV,
RH /RH

0 �2.5 and then decreases to a negative value. This
trend is qualitatively consistent with the experimental data.
In the next section, we shall study the doping dependence of
RH, assuming a model in which the spin-stripe potential
opens at x=0.24 and grows as doping is reduced. We shall
see that such a model can semiquantitatively account for the
experimental data.

D. Charge-stripe potential only

We now consider the effects of Vc on the transport prop-
erties with the spin potential set to zero �Fig. 6�. Figure 3
shows two representative Fermi surfaces for Vc=0.15 eV
and Vc=0.35 eV. For Vc in this range, all the pieces of the
Fermi surface are open. However, some pieces of the open
Fermi surface have relatively large curvature because they

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

σ xx

0 0.05 0.1 0.15 0.2 0.25 0.3
2

3

4

5

6

7

8

σ yy

0 0.05 0.1 0.15 0.2 0.25 0.3
V (eV)

0

0.5

1

1.5

2

2.5

3

σ xy

0 0.05 0.1 0.15 0.2 0.25 0.3
V (eV)

-0.2

-0.1

0

0.1

0.2

R
H

(a) (b)

(c) (d)

(
a
r
b
.
u
n
i
t
s
)

(
a
r
b
.
u
n
i
t
s
)

(
a
r
b
.
u
n
i
t
s
)

(
a
r
b
.
u
n
i
t
s
)

FIG. 5. Transport coefficients in the spin-stripe-ordered state at doping x=1 /8 and Vc=0. �a� �xx as a function of V. �b� �yy as a function
of V. �c�: �xy as a function of V. �d� RH as a function of V. Here and in the following plots of the transport properties, the solid lines are
guides to the eye; exceptions will be stated explicitly.
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can be viewed as the merging of the hole Fermi pockets. As
shown in Fig. 6�c�, �xy is thus always relatively large even
for Vc=0.35 eV. From Fig. 6�d�, we see that the onset of the
charge-stripe order gives a rapid increase in RH. In fact,
RH�V=0,Vc=0.2 eV�=1.5RH�V=0.2 eV,Vc=0�. We also
notice that the anisotropy is less than that in the spin-stripe
case; in the spin-stripe case, �yy /�xx�100 at V=0.3 eV
while in the charge-stripe case, �yy /�xx�15 at Vc
=0.35 eV.

We see that, although the increase in the charge-stripe
potential substantially enhances RH, RH remains positive for
all the four Vc values considered here. Further calculation
�not shown here� suggests that RH changes sign around Vc
=0.8 eV and approaches a negative value in the limit Vc
� t. This suggests that a model with only charge-stripe order
is inconsistent with experimental data.

E. Coexistence of the spin-stripe potential and the charge-
stripe potential

Now we study the case in which the spin stripe and the
charge stripe coexist, V�0 and Vc�0. The interplay be-
tween these two stripe potentials leads to very complicated
behavior of RH. Figure 7 shows two representative sets of
results. In both cases, we fix V and increase Vc from zero to
a large value. Figure 7�a� shows RH�Vc� for V=0.2 eV. In
this case, RH�Vc=0��0, and at a small Vc=0.05 eV, RH is
strongly enhanced by a factor of 1.5. For Vc=0.3 eV, RH
becomes negative while at larger Vc, RH is positive again.
Figure 7�b� shows RH as a function of Vc for V=0.25 eV. In

this case, RH�Vc=0��0. At a small value of Vc=0.05 eV,
the sign is reversed to be holelike while at larger Vc, RH
becomes negative again.

The behavior of RH can be understood in terms of the
evolution of the Fermi-surface topology when changing Vc
and V. In the case of V=0.2 eV, for both Vc=0.05 eV and
Vc=0.1 eV, the calculated Fermi surface �not shown� closely
resembles that in Fig. 2�a�, explaining the positive sign of
RH. For the case Vc=0.3 eV, the Fermi surface is given in
Fig. 4 and has a qualitatively different topology such that the
hole Fermi surface becomes open, and the electron pocket
�which now dominates �xy� changes from being centered at
�0,�� to being centered at �0,0�. At larger values of Vc, the
electron pocket is eliminated, leaving open Fermi surface
only, qualitatively resembling Fig. 3�b�. The sign of �xy is
calculated to be positive.
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FIG. 6. Transport coefficients in the charge-stripe-ordered state calculated for doping x=1 /8 and V=0. �a� �xx as a function of Vc. �b� �yy

as a function of Vc. �c� �xy as a function of Vc. �d� RH as a function of Vc.
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FIG. 7. RH for nonzero V and nonzero Vc, and doping x=1 /8.
�a� V=0.2 eV; �b� V=0.25 eV. Dashed line indicates the position
of RH

0 .
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In the case of stronger V=0.25 eV, the Vc=0 Fermi sur-
face is shown in Fig. 2�b�. At Vc=0.05 eV, the hole pockets
reappear with a very small radius, leading to a Fermi surface
very similar to that in Fig. 2�a�. However, the small hole
pockets dominate the sign of RH. The hole Fermi pockets
grow with increasing Vc and eventually merge into open
Fermi surface at large Vc. For Vc=0.3 eV, the Fermi-surface
topology changes qualitatively as in the case of V=0.2 eV
and Vc=0.3 eV, �Fig. 4�. This Fermi-surface reconstruction
can qualitatively explain the negative sign of RH at Vc
=0.3 eV. At Vc=0.5 and 0.7 eV, the electron pocket is elimi-
nated, leaving only open Fermi surface, as qualitatively rep-
resented in Fig. 3�b�. However, the sign of RH remains nega-
tive.

The discussion in this section shows that the interplay
between the spin-stripe and the charge-stripe potentials leads
to two possibilities to account for the experimental observa-
tion of the sign change of RH. In the simplest case, the spin-
stripe order is dominant, and the charge-stripe order potential
is small; Vc should be less than 0.05 eV when V=0.25 eV
and x=1 /8. Then we assume that Vc can be neglected. In the
other scenario, both V and Vc are large, as shown in Fig. 7. In
the next section, we pursue the first scenario in more detail.

V. HALL EFFECT: DOPING DEPENDENCE

We now study the doping dependence of the transport
coefficients. Doping has two effects, changing the carrier
density and changing the strength of the stripe potential.
From the discussion of the last section, we assume a model
for the electrons in the stripe-ordered state in which the spin-
stripe scattering is dominant, and the charge-stripe scattering
is neglected.

We assume a mean-field dependence of the stripe order
parameter on doping for x�0.24,

V = V0
�1 − x/0.24, �7�

and V=0 for x�0.24, where V0 controls the rate at which the
stripe order is setting in. Experimental results show that the
x=0.12 sample has a negative RH. Figure 5�d� suggests that
V0 should be relatively large, such that 0.2�V�x=0.12�
�0.3 eV. Thus, we choose V0=0.35 eV. Then for each
doping x, the conductivities and the Hall coefficient can be
calculated from Eqs. �3�–�5�. The results are shown in Fig. 8.
We observe that RH starts at x=0.24 �V=0� at the band value
1 / �1+x�, increases as doping is decreased, and jumps to a
negative number around x=0.13.

In terms of the Fermi-surface evolution, for doping x
=0.12, the Fermi surface can be represented by Fig. 2�b�, for
doping x=0.125, the Fermi surface resembles that in Fig.
2�a� with tiny hole pockets, and for doping in the range
0.13�x�0.16, the Fermi surfaces can be represented by
Fig. 2�a�.

We see that RH has a local minimum around x=0.18.
Starting from x=0.15, and increasing the doping �decreasing
V�, RH first decreases rapidly, and after x�0.18, it increases
and then decreases again to the band value RH

0 . This can be
qualitatively understood in terms of the Fermi surface evo-
lution. At x=0.15, the Fermi surface resembles that in Fig.

2�a�. On increasing the doping, the size of the hole pockets
centered at ��� /8,� /2� increases. These hole pockets even-
tually merge into open Fermi surface �see Fig. 9�a�	 for x
=0.18. Increasing x further, additional pieces of Fermi sur-
face appear, as shown in Fig. 9�b�, which are holelike, and
contribute to the increase in RH around x=0.2. Because the
structure of RH in the doping range 0.15�x�0.2 arises from
the small pockets shown in Fig. 9�b�, we believe it will be
very sensitive to details and extrinsic effects including scat-
tering and magnetic breakdown. On increasing the doping
toward x=0.24 where V=0, RH is then described by the criti-
cal behavior, 
RH /RH

0 =aV, with positive a.

VI. LARGE STRIPE POTENTIAL LIMIT

In this section, we consider the case where the stripe po-
tential V� t and the hole doping is in the range 0.125�x
�0.25. We assume that, on average, no two electrons occupy
the same lattice site. We will see that this constraint requires
that 2Vc�V. Figure 10�a� shows the spin-stripe potential for
spin-up electrons. �The spin potential for spin-down elec-
trons is opposite.�

For large spin potentials, the doped holes reside on the
columns where �s=0 �the circles without arrows in Fig.
10�a�	, referred to as charge stripes. The doped holes mainly
move along these charge stripes with a small probability to
hop from one stripe to another. A general Hamiltonian for
charges moving in weakly coupled stripes of spacing four
lattice constants is
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FIG. 8. RH, expressed as the inverse of the effective carrier
density per plane per cell as a function of doping. The spin-stripe
potential V takes a mean-field form V�eV	=0.35�1−x /0.24, and the
charge-stripe potential is neglected, Vc=0. RH�x=0.24��0.8
�1 / �1+x�. Dashed line indicates RH=0.
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FIG. 9. Fermi surfaces for relatively small V. �a� V=0.175 eV,
Vc=0, and doping x=0.18. �b� V=0.143 eV, Vc=0, and doping
x=0.20.
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H = �0�py� + �
n

fn�py�cos 4npx, �8�

with small fn. From Eq. �5�, the Hall conductivity is

�xy = − A

−�

�

dpxv
y�px�

dvx�px�
dpx

, �9�

where A=�Q
B

	0

1
2��2. At fn=0, the Fermi surface is py = p0,

and the dispersion may be approximated by

�0�p0 + 
py� = v0
py +
1

2
m0
py

2. �10�

To leading order in fn, we find

�xy = − 16�A�
n

n2�m0

v0
−

1

fn

dfn

dpy
� fn

2, �11�

with all quantities evaluated at p0. In most cases we find that
the sign of the Hall effect is determined by the curvature of
the 1D band �m0 /v0�, but for some particular parameter val-
ues, structure in the interchain hopping can produce a sign
change, for example, when one of the fn goes through zero.

The longitudinal conductivities �xx,yy can be calculated in
a similar manner in terms of fn. To leading order of fn, Eq.
�3� can be approximated as

�xx = B

−�

�

dpx�1 + �dpy

dpx
�2

�vx�2/��vx�2 + �vy�2

� B16�


v0
 �n

n2fn
2, �12�

where B=�Q� / �4�2� and fn is evaluated at p0. Equation �4�
can be approximated as

�yy � B

−�

�

dpx
v0
 = B2�
v0
 . �13�

In the rest of this section, we present an evaluation of fn in
the strong-coupling limit using perturbation theory.

The zeroth order Hamiltonian describes the motion of
electrons along the y direction, as defined in Fig. 10�a�, in the
stripe potential. The unit cell is doubled along this direction
due to the spin potential, as shown by the boxes in Fig. 10�a�.
It is convenient to introduce a pseudospinor operator,

�̂xy = ��xy
B

�xy
A � , �14�

where x, y label unit cells as shown in Fig. 10 and �xy
A,B is the

electron annihilation operator. Then, for the column x=n, the
zeroth order Hamiltonian is given by

Hn
�0� = �

py

�̂n,py

† Ĥn,py

�0� �̂n,py
, �15�

with

Ĥn,py

�0� = Vn
c + Vn

s �̂z − 2t� cos 2py − t��1 + cos 2py��̂x

− sin 2py�̂y	 , �16�

where �̂’s are the Pauli matrices, and V0
c =−V2

c =−2Vc, V1
c

=V3
c =0, V0

s =0, V1
s =V3

s =�2V, and V2
s =−2V. After a canonical

transformation T, which rotates the pseudospinor �̂ in the
pseudospin space first about the �̂z axis by py /2 and then
about the �̂y axis by � /2, Eq. �16� becomes

Ĥn,py

�0� = Vn
c + Vn

s �̂x − 2t� cos 2py + 2t cos py�̂z. �17�

The energy bands on the column n=0 are

E�
0 = − 2Vc − 2t� cos 2py � 2t
cos py
 , �18�

with corresponding wave functions


 + � = � ��cos py�
��− cos py�

�, 
− � = ���− cos py�
��cos py�

� . �19�

For hole doping x in the range 0.125�x�0.25, �0�py�=E−
0.

To leading order in t /V, the energy bands are E�
1 = ��2V on

the column n=1, E�
2 =2Vc�2V on the column n=2, and

E�
3 = ��2V on the column n=3. Figure 10�b� shows these

energy bands for each column.

(a)

x
y

A

B

A

B

-1 0 1 2 3 4 5

(b)

0 1 2 3 4

−2Vc

−
√

2V

√
2V

−2V + 2Vc

2V + 2Vc

−
√

2V

√
2V

−2Vc

FIG. 10. �a� The spin-stripe potential for spin-up electrons. For spin-down electrons, the arrows are opposite. The length of arrows is
proportional to the magnitude of the potential. The charge-stripe potential is not shown here. �b� The energy bands for each column
represented by the filled boxes with height proportional to the bandwidth. In this plot, V=3Vc and hole doping x=0.125. The Fermi level is
shown as dashed line.
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The motion of electrons along the x direction is described
by

HX = �
n,py

��̂n+1,py

† Hpy

+ �̂n,py
+ h.c.	

+ �
n,py

��̂n+2,py

† H++�̂n,py
+ h.c.	 , �20�

where, after the canonical transformation T,

Hpy

+ = − t − 2t� cos py�̂z, �21�

and

H++ = − t�. �22�

We calculate the matrix elements for electrons �holes� to
hop from one charge stripe to a nearby stripe by perturbation
theory using HX as a perturbation. In the following, we first
consider the case where there is no charge potential, and then
consider the case where the charge potential Vc is nonzero.

A. Spin-stripe potential only

In the absence of the charge potential, the leading-order
terms in the matrix elements that describe electrons hopping
among charge stripes are of order 1 /V2. To this order, there
are three possible processes whose matrix elements are de-
noted by MA, MB, and MC. MA is given by

MA = �− 
H++ 1

E−
0 − Ĥ2,py

�0�
H++
− � , �23�

and represents the hopping between stripes n=0 and n=4 by
two H++. MB, which represents the hopping between stripes
n=0 and n=4 by two Hpy

+ and one H++, is given by the sum
of the three terms,

M211
B = �− 
H++ 1

E−
0 − Ĥ2,py

�0�
Hpy

+ 1

E−
�0� − Ĥ3,py

�0�
Hpy

+ 
− � , �24�

M121
B = �− 
Hpy

+ 1

E−
0 − Ĥ1,py

�0�
H++ 1

E−
0 − Ĥ3,py

�0�
Hpy

+ 
− � , �25�

and

M112
B = �− 
Hpy

+ 1

E−
0 − Ĥ1,py

�0�
Hpy

+ 1

E−
0 − Ĥ2,py

�0�
H++
− � . �26�

MC represents the hopping between stripes n=0 and n=8 by
four H++, and is given by

MC = �− 
H++ 1

E−
0 − Ĥ2,py

�0�


H++
 + �
1

E−
0 − E+

0 �+ 
H++ 1

E−
0 − Ĥ6,py

�0�
H++
− � ,

�27�

where V6
s =−V2

s .

To order 1 /V2, the Hamiltonian H in Eq. �8� is

H = �0�py� + f1�py�cos 4px + f2�py�cos 8px, �28�

where

f1 = 2�MA + M112
B + M121

B + M211
B �

=
2tt�

V2 �2t� + t��
cos py
 −
t�

V2 ��1 − �2�t2

+ 4�1 + �2�t�2 cos2 py	 , �29�

f2 = 2MC = −
t�4

8tV2
cos py

, �30�

and we have neglected the hopping processes in which an
electron hops from a charge stripe into the region between
stripes with a large potential and hops back to the same
stripe. These processes give corrections to �0�py� of order
1 /V2 with no px dependence, and thus have no effects on RH
to leading order. Equation �28� can also be obtained from
third order perturbation calculation of Eq. �2�, treating �p as
a perturbation.

Substituting Eqs. �29� and �30� into Eq. �11�, we obtain
the Hall conductivity �xy to leading order in 1 /V in the
large-V limit,

�xy = −
16�A

V4 � f1
2�m0

v0
−

1

f1

df1

dpy
� + 4f2

2�m0

v0
−

1

f2

df2

dpy
��

�
1

V4Sxy , �31�

where all the quantities are evaluated at p0, which is deter-
mined by the carrier density. Since both �xx and �yy are
positive definite, the sign of RH is determined by that of �xy.
Similarly, substituting f1 and f2 into Eqs. �12� and �13�, we
obtain the leading-order terms of �xx and �yy,

�xx =
1

V4B
16�


v0

�f1�p0�2 + 4f2�p0�2	 �

1

V4Sxx, �32�

and

�yy = B2�
v0
 � �yy
� . �33�

So RH approaches a constant as the stripe potential V→�,

lim
V→�

RH =
Sxy

Sxx�yy
� � RH

� . �34�

We observe that Sxy, Sxx, �yy
� , and RH

� are determined by the
carrier density and the band parameters t, t�, and t�. We
perform numerical calculations of the conductivities �xx,xy,yy
and the Hall coefficient RH for the spin-stripe potential V up
to 10 eV, doping x=0.125, Vc=0, and the canonical values of
the band parameters: t=0.38 eV, t�=0.32t, and t�=0.5t�.
The results are shown as dots in Fig. 11, where we compare
these numerical results to the corresponding V→� limits
�solid lines�. We observe that the numerical results indeed
approach the expected values. There are small discrepancies,
which we attribute to the errors in calculating the chemical
potential and in numerically finding the Fermi surface. For
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the parameters used here, RH
� �0. In Sec. IV, we showed that,

for V=0.3 eV, there is only open Fermi surface and RH�0.
Thus there is a change of sign in RH for V�0.3 eV �roughly
at V=1 eV, see Fig. 11�d�	. This sign change can be under-
stood qualitatively from Eqs. �8� and �11�, where we argued
that �xy changes sign when one of the fn goes through zero.
We compared the Fermi surfaces for V close to 1 eV and
found strong evidence that at least one of the fn in Eq. �8�
changes sign.

We now study the dependence of RH
� on doping and band

parameters. Figure 12 shows RH
� as a function of doping,

using the canonical values of the band parameters: t� / t
=0.32 and t� / t=0.16. We also calculated RH as a function of
doping numerically for V=10 eV, shown as dots in Fig. 12.
There is good agreement between the numerical results and
RH

�. We observe that, for the canonical values of the band
parameters and in the doping range 0.125�x�0.25, RH

�

�0. The sign of RH
� as a function of the band parameters t� / t

and t� / t for doping x=0.125 is plotted in Fig. 13, which
shows that the area of the gray region where RH

� �0 is much
larger than that of the black region where RH

� �0.

B. Coexistence of charge-stripe potential and spin-stripe
potential

In this subsection, we consider the case where Vc=�V
with ��1 /2 and Vc� t. When Vc is of the same order as V,
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FIG. 11. Numerical results of the transport coefficients at large spin-stripe potential V, for doping x=0.125, Vc=0, and for the canonical
values of t, t�, and t�. �a� V4�xx �dots� and Sxx �solid line�. �b� �yy �dots� and �yy

� �solid line�. �c� V4�xy �dots� and Sxy �solid line�. �d� RH

�dots� and RH
� �solid line�.
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FIG. 12. RH
� as a function of doping x for Vc=0 and the canoni-

cal values of the band parameters. Solid line: RH
� from Eq. �34�.

Dots: numerical results for V=10 eV.
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the leading-order term in the matrix element MA is of order
1 /V, and it is the only term at this order. To the order of 1 /V,
the Hamiltonian in Eq. �8� takes the form

H = − 2Vc − 2t� cos 2py − 2t
cos py
 + f̃1 cos 4px, �35�

where

f̃1 = 2MA =
2�

1 − 4�2

t�2

V
, �36�

and terms of order 1 /V and independent of px are neglected.
Substituting Eq. �36� into Eq. �11�, the Hall conductivity

�xy to leading order of 1 /V is given by

�xy = −
16�A

V2

m0

v0
f̃1

2 �
1

V2 S̃xy , �37�

where we have used df̃1 /dpy =0. The longitudinal conduc-
tivities �xx and �yy are calculated in a similar manner, to
leading order of 1 /V,

�xx =
1

V2B
16�


v0

f̃1

2 �
1

V2 S̃xx, �38�

and �yy is given by Eq. �33�. So, RH approaches a constant in
the V→� limit,

lim
V→�

RH � R̃H
� =

S̃xy

S̃xx�yy
�

� −
m0

v0
. �39�

We see that S̃xy, S̃xx, �yy
� , and R̃H

� are determined by the ratio
�=Vc /V, the hole doping x, and the band parameters t, t�,
and t�. The numerical results of the conductivities �xx,xy,yy

and the Hall coefficient RH for the charge-stripe potential Vc

up to 50 eV, the spin-stripe potential V=3Vc, doping x
=0.125, and the canonical values of the band parameters are
shown in Fig. 14, where we compare the results to the cor-
responding V→� limits. We observe that the numerical re-
sults approach the expected values with small discrepancies
that we attribute to the errors in calculating the chemical
potential and in finding the Fermi surface numerically. For

the parameters used here, R̃H
� �0.

Equation �39� shows that R̃H
� is entirely determined by the

curvature of the 1D band at p0: m0 /v0. We now study R̃H
� as

a function of doping and the band parameters. In Fig. 15�a�,
we plot R̃H as a function of doping x for the canonical values
of the band parameters, t� / t=0.32 and t� / t=0.16. We see that

for this set of band parameters, R̃H
� �0 for doping 0.125

�x�0.25 because both m0 and v0 are positive in this doping

range. In fact, it is easy to see that R̃H
� �0 in this doping

range as long as t� / t�0. Since �0�py� is independent of t�,

we only need to study the effects of t� / t on R̃H
�. Figure 15�b�

shows R̃H
� as a function of t� / t for the doping x=0.125. We

see that R̃H
� �0 for −0.32� t� / t�0.32.

We mention that, when the charge-stripe potential Vc� t

and Vc�V, f̃1 in Eq. �36� is of the same order as f1 in Eq.
�29� and f2 in Eq. �30�. In this case, to leading order of 1 /V2,
the Hamiltonian H in Eq. �8� has the form of Eq. �28�; the
only difference is that the coefficient of cos 4px is now given

by f1+ f̃1. The Hall effect in this case is then similar to that in
the Vc=0 case.
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FIG. 14. Transport coefficients in the large spin- and charge-stripe potentials for V=3Vc, doping x=0.125, and the canonical values of the
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VII. DISCUSSION

To conclude, we have considered the Hall effect in a
stripe-ordered system. We found that the Hall effect RH
shows complicated behavior as the spin-stripe potential V
and/or the charge-stripe potential Vc are varied. For moderate
values of V and Vc, the behavior of RH can be understood as
a result of the change of the Fermi-surface topology, which is
quite sensitive to the tuning of the stripe order potentials. In
the strong-coupling limit, the sign of RH was also found to
depend on details.

In a model with only static spin-stripe potential V, RH first
increases from a positive band value RH

0 , then decreases to
negative values, and goes back to positive values, as increas-
ing V up to �1 eV, and then has a further sign change at
unphysically large V. This initial increase and the subsequent
change of sign qualitatively agree with the experimental
data. This is further supported from the model calculation in
which V is assumed to increase when decreasing doping
from x=0.24, as shown in Fig. 8. We mention that analogous
calculations �not shown here� based on spiral order do not
produce a sign change. In a model with only static charge-
stripe potential Vc, our calculation shows that RH increases
from the band value until a sign change at Vc�0.8 eV after
which the sign assumes the strong-coupling limit electronlike
value. This is qualitatively inconsistent with experimental
data.

When both the static spin-stripe potential and the charge-
stripe potential are present, RH can be strongly enhanced or

can be made negative by tuning V and Vc, as shown in Fig. 7.
While both the spin-stripe model, and the V and Vc model
produce a sign change in RH, the mechanisms are different.
In the spin-stripe model, the sign change of RH is due to the
electron pocket centered at �0,�� and the elimination of the
hole pockets centered at ��� /8,� /2�. In the spin- and
charge-stripe model, the sign change is due to the merging of
the hole pockets into open Fermi surface and the appearance
of the electron pocket centered at �0,0�. Measurements di-
rectly probing the Fermi surfaces are required to distinguish
these two scenarios. In our calculation, we found that the
open Fermi surface can give either a positive �i.e., holelike�
contribution or a negative �i.e., electronlike� contribution to
�xy. Under certain situations, especially when there is only
open Fermi surface, this contribution, albeit small, is impor-
tant since the small �xx would compensate the smallness of
�xy to give a large 
RH
; the V=0.3 eV, Vc=0 point in Fig.
5�d�, and the V=0.25 eV, Vc=0.7 eV point in Fig. 7�b�, are
two examples. However, once there are electron or hole
pockets, the contribution to �xy from the open Fermi surface
is negligible and thus the sign of RH is fixed.

We also considered the large stripe potential limit, in
which the system is quasione dimensional, and the Fermi
surface is open. We showed that analytical results of RH can
be obtained in the limit V� t, both for V�Vc and for V
�2Vc� t. In this limit, RH depends on the carrier density, the
electron band parameters, and the charge potential Vc, as
previously noted by Emery and coworkers,3 and its sign can
be positive or negative.

There remain discrepancies between experiment and
theory. Experiment shows that RH at x=0.2 is about four
times larger than that at x=0.24 while our calculation only
shows a factor of two. However, the magnitude of RH de-
pends crucially on the details of the Fermi surface. Angle
dependence of the scattering rate21 �not considered here� may
also be important. A systematic study of the doping depen-
dence of the low-temperature Hall effect, as was done on
PCCO,12 would be helpful. However, the crucial generic re-
sult of our calculation is that the sign change of RH observed
in Refs. 10 and 11 appears to be strong evidence in favor of
a spin-stripe order.
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